Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less...

متن کامل

Dynamic Contact Angle on a Surface with Gradient in Wettability

The retention and drainage of water on heat exchangers is extremely important in air-conditioning, refrigeration, and heat-pumping systems. In this work, droplets of varying sizes sliding on an inclined heat exchanger materials with and without a wettability gradient are observed using a high-speed camera. The dynamic contact angles, the shape evolution and the velocity of the droplet are obtai...

متن کامل

Wettability Switching Techniques on Superhydrophobic Surfaces

The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However,...

متن کامل

Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface

We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely...

متن کامل

Wettability influences cell behavior on superhydrophobic surfaces with different topographies.

Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials

سال: 2017

ISSN: 1996-1944

DOI: 10.3390/ma10030254